
 Curriculum Overview
 Our Goal
 The goal of the WeThinkCode_ Curriculum is to facilitate learning that will transform students
 into competent, entry-level software developers who:

 ● can quickly add value to the software development teams and organisations they join;
 and

 ● are equipped with the technical and behavioural skills to self-direct their learning beyond
 their training at WeThinkCode_.

 This model is built from a holistic view of the software developer’s capabilities and skills to be
 effective in their daily work.

 Our Pedagogy
 We train using a peer-to-peer methodology which means there are no lecturers. Learning
 material is delivered digitally, and students support one another in their learning. The style of
 instruction supports self-directed and peer-to-peer learning, which is a necessary skill set of an
 effective professional software developer.

 We built a proprietary Learning Management System (LMS) that directly implements our
 pedagogy and essential software development practices expected by the industry. In addition,
 the LMS seamlessly integrates with tools widely used globally, such as git and PGP. This
 combination promotes the fundamentals of programming and provides valuable experience
 using prevalent tools.

 Students are introduced to concepts in bite-sized chunks in the coursework and subsequently
 required to demonstrate their understanding by submitting exercise solutions that are functional
 and working at every step.

 We leverage some additional constructs to supplement the coursework, such as the Technical
 Mentor Program and Code Clinics.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 The Learning Management System
 The LMS client is a command-line application used to deliver curriculum content to students and
 track their submissions and progress. All exercises come with a set of automated tests that must
 execute successfully for the student to submit. Additionally, the LMS pairs students with each
 other so that their submissions undergo peer reviews. The reviews encourage peer- learning,
 sharing healthy feedback and enhancing code comprehension.

 In-Person Support

 While there are no lecturers on campus to augment the peer-to-peer learning environment, we
 also provide in-person support in the form of Technical Mentors and Code Clinics.

 WeThinkCode_ has a team of software developers that use the LMS data to track the progress
 and performance of students. This team provides further support for students as needed.

 ● Code Clinics
 Stronger students may volunteer their time to help students who are otherwise
 struggling. Code Clinics encourages cross-pollination and peer-to-peer teaching and
 learning.

 ● Technical Mentorship
 Technical Mentors are a nominated set of second-year students with good performance
 to support groups of first-year students. Technical mentors act as the interface between
 WTC_ staff and first-year students. In addition to being a source of technical support,
 they also serve as a channel to drive non-technical outcomes by facilitating activities
 such as daily/weekly updates, task management and reviewing presentations designed
 to build confidence in speaking in front of groups.

 Coursework Format
 Software development practitioners who are respected and highly recognised and have a
 collective experience spanning several decades design the curriculum. The WeThinkCode_
 curriculum authors continually refresh the curriculum based on feedback from students, partners
 and industry trends.

 Individual and team projects make up the coursework of every module. Students design and
 deliver on the project requirements using programming languages, development tools,
 technologies and practices adopted by high performing software delivery companies.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Every semester focuses on the holistic learning of:

 ● programming as the act of designing and writing code for a system;
 ● engineering as the set of techniques for automated testing, deployment and running of

 programmed systems;
 ● communication which is the foundation for analysis, design and collaboration; and ●
 teamwork because software developers inevitably work in teams to deliver software

 products.

 Block 1 (8 months)
 101 Programming Fundamentals
 This module introduces programming constructs that are the foundation of any kind of
 programming. For many students, this is their first time programming. To overcome the technical
 vocabulary of computer science, we present the fundamentals of programming in plain
 language. Once the conceptual understanding is embedded, then only is the computer science
 terminology introduced.

 In this module, the language of instruction used is Python. We chose Python because it is one
 of the more accessible programming languages to understand and is widespread globally.

 By the end of this module, students:

 ● will know the programming fundamentals, including variables, branching, loops, data
 structures, procedures and functions, error and exception handling, packaging their code
 into modules and using external libraries;

 ● are comfortable using unit tests to prove their programs’ functionality and write
 elementary unit tests of their own;

 ● have practised the basics of git and branching;

 ● will have learned and implemented OAuth using the Google OAuth API;

 ● have written code that integrates with an external HTTP RESTAPI, including JSON;

 ● can write programs that use configuration files to control the parameters of a system;
 and

 ● know how to write programs that read and write files.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Programming
 ● Making Decisions: Make a program do different things based on the data it receives.

 ● Repeating Instructions: Get a program to do the same thing several times over.

 ● Structuring Data: Combine data into meaningful structures.

 ● Combining Instructions: Combine several instructions and reuse the combined
 instructions as a single instruction.

 ● Processing Collections of Data: Work with multiple instances of the same kind of data
 in various ways.

 ● Modules and Packages: Use code from other developers (including open source) to
 construct a more extensive program from smaller modules.

 Engineering
 ● How to structure code files and package them to be run.

 ● How to write a program and test that the core program is functioning as intended.

 ● How to run automated tests

 ● Introduction to Test-Driven Development

 ● Use PGP sign git commits

 Communication
 ● Journaling: Reflecting on various learnings and their application and summarising them,

 in written format, in a journal. Journaling hones the ability to describe technical concepts
 and summarise them in a way that others can understand. The more reflective a
 developer is, the better they are at communicating.

 ● Presentations: Delivering short-form presentations known as Pecha Kucha to peers.
 Giving presentations develops public speaking skills and the ability to prepare slides and
 use them to deliver information effectively.

 Team Work
 ● Collaboration: Working in small teams to build a program that, ordinarily, is too much

 for one person to complete on their own in the prescribed time. Students must
 collaborate in groups of 4 to build a program that works end-to-end.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 ● An Iterative Way of Working: The teams work on a group project in 3 iterations of 2
 weeks each. Time-boxing the scope of work introduces concepts of planning and the
 necessity of shared understanding.

 ● Demos: At the end of the semester, each group present their projects to staff and guests
 from the industry.

 ● The Team Project: The brief is to build a console-based system that manages the Code
 Clinics. The project requires students to use their fundamental knowledge to integrate
 with the Google Calendar API to implement the code clinic schedules. Each team
 collaborates on the code using a shared git repository on GitHub.

 102 Object-Oriented Programming
 This module is an introduction to software design through the lens of Object-Oriented
 Programming (OOP).

 We assume that students are comfortable with fundamental programming constructs introduced
 in the 101 Programming Fundamentals module. In this module, we introduce Java as the
 programming language. The switch from Python to Java further entrenches the fundamentals of
 programming.

 By the end of this module, students:

 ● will know the basics of object-oriented programming such as encapsulation, inheritance,
 polymorphism and composition;

 ● would have refactored procedural code to object-oriented code;

 ● have been introduced to DevOps by using GitHub actions to build, test and package
 their programs;

 ● have programmed a client-server architecture system from scratch;

 ● will know the fundamentals of network programming by programming with sockets;

 ● have written a multi-user system using thread-based concurrency; and

 ● will learn how to implement a custom application protocol with JSON.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Programming
 ● Java Fundamentals: How to use the basic programming constructs in Java to mould

 the design of a program.

 ● Encapsulation: Create classes to implement behaviour, hide and govern access to
 data.

 ● Inheritance: Use abstraction as an instrument of design.

 ● Polymorphism: Implement specialisation of objects at run-time, based on the
 abstraction designed.

 ● Composition: Combine objects to create more complex objects.

 Engineering
 ● Build tools: Build using Apache Maven, the most popular build tool for Java programs, to

 manage program dependencies and compile and test programs.

 ● Unit Testing: Use JUnit to reinforce existing testing techniques.

 ● Refactoring: Refactor a procedural program to an object-oriented program.

 Communication
 ● Team Leads & Daily practices: Team leads are nominated to be the interface to each

 team. The teams continue honing their agile techniques such as stand-ups, managing a
 task board, iteration planning, showcases and retrospectives.

 Team Work
 ● Students must collaborate in teams of 4 to build a program that works end-to-end. The

 project consists of 3 two week iterations.

 ● Students follow agile practices for building software, including pair programming, daily
 standups, showcases, and retrospectives at the end of each iteration. A final demo takes
 place at the close of the semester.

 ● The Team Project: The brief is to build a multi-user network-based game called
 RobotWorlds wherein players launch robots into a grid world and combat each other. The
 system requires students to apply their knowledge of object orientation to implement
 client socket-based communication over a network and a multi-threaded server. The
 choice of the user interface is left to the team to decide. Groups share their code on
 GitHub and are required to use GitHub actions to automate their programs’ build, test,
 and packaging.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Block 2 (8 months)
 201 Brownfield Software Development
 Most software development jobs entail programming in an existing codebase. This kind of
 programming is known as brownfield development. Furthermore, software developers work in
 teams. This module, therefore, focuses on how to work on an existing codebase as a team.

 Students work exclusively in the team for the entire module with a codebase that is given to the
 team. We also introduce other technologies, practices and techniques expected of software
 developers in the workplace.

 By the end of this module, students:

 ● have worked in a team using agile principles and practices;

 ● have analysed a codebase to understand its technical debt and quality;

 ● have continually practised refactoring an existing code base to improve its quality and
 repay the technical debt;

 ● can write unit tests, acceptance tests and integration tests;

 ● will have implemented a build pipeline for continuous integration and delivery;

 ● will have packaged an application using Docker;

 ● programmed persistence with SQL based relational databases and an object-relational
 mapper;

 ● will have learned how to recognise commonly encountered problems and solve these
 using design patterns;

 ● understand coupling and cohesion in software design and architecture.

 Programming
 ● Automated Testing: Write unit tests, acceptance tests and integration tests.

 ● Persistence: Use a relational database and SQL to store and retrieve data.

 ● Code Analysis: Analyse a codebase to establish its technical debt and code quality.

 ● Refactoring: Refactor existing code to improve its quality and design by applying TDD.

 ● Design Patterns: Apply patterns to enhance the structure at the code level.

 ● Fundamentals of Software Architecture: Understand coupling and cohesion.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Engineering
 ● DevOps : Create build pipelines for continuous integration and continuous delivery,

 including automated testing and deployment with Docker.

 ● Effective Version Control: Use either trunk-based development or pull requests to
 maintain a stable main branch of the codebase

 Communication
 ● Showcases: Every iteration ends with a showcase. Students prepare and present their

 work for that iteration to mentors and staff.

 ● Technical Documentation: Illustrate the architecture and design of the system under
 development, from component level down to modules and classes.

 Team Work
 ● Planning: Students are given goals for each iteration and plan, estimate and prioritise

 their work to achieve the iteration goals.

 ● Taskboard: Use a task board to manage the backlog of work, track work progress, and
 keep the board up to date via daily stand-ups.

 ● Retrospectives: Reflect on the iteration and identify and implement improvements in the
 way the team works.

 ● Pairing: Practice pair programming to increase shared understanding and quality of the
 code.

 202 Client-side Web Applications
 This module is half a semester.

 By the end of this module, students:

 ● will have written a web-based application using HTML, CSS and JavaScript;

 ● know how to consume an HTTPAPI in the client-side web application;

 ● will be familiar with asynchronous programming;

 ● will know the difference between server-side generated web pages and client-side
 dynamic web pages.

 CONFIDENTIAL - PLEASE DO NOT SHARE WITHOUT PERMISSION

 Electives
 Students are required to select one of the following electives as the last module in their studies.

 All electives are half a semester.

 203 Quality Assurance Engineering
 In this module, students will learn:

 ● Test strategies
 ● Automated tests for web APIs
 ● Automated tests for client-side web applications (GUI testing)
 ● Continuous integration and continuous delivery
 ● Automated provisioning of run-time environments
 ● Regression testing

 204 Mobile Application Development
 In this module, students will learn:

 ● Cross-platform mobile application development with the Flutter framework

 ● Automated Tests for Mobile Applications
 ● Design patterns
 ● Consuming web APIs
 ● Packaging and deployment of mobile applications

 205 Service-Oriented Architecture
 In this module, students will learn:

 ● Service decomposition and design
 ● Inter-service communication using message queues
 ● Asynchronous communication and eventual consistency.

 206 Data Engineering
 In this module, students will learn:

 ● Understand what data engineering is and where it fits into the modern data lifecycle/landscape.
 ● Understand the difference between batch and streaming workloads.
 ● Understand data formats, how to structure data, and how to select the relevant/best technology
 for storing and processing.
 ● Build, monitor, and orchestrate data pipelines.
 ● Understanding data quality/integrity.

 207 Cloud Development
 In this module, students will learn:

 ● Understanding Cloud Computing Concepts
 ● Proficiency in Cloud Services and Platforms
 ● Cloud Application Development and Deployment
 ● Cloud Security and Compliance
 ● Cost Management and Optimization

